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Conditional Lyapunov exponents from time series

K. Pyragas*

Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania
~Received 9 May 1997!

A method for estimating conditional Lyapunov exponents from time series of two unidirectionally coupled
chaotic systems is developed. It uses two scalar data sets, one taken from the driving and the other from the
response system, and enables one to detect a generalized synchronization in an experiment without recourse to
an auxiliary response system. The method is illustrated on coupled maps as well as coupled chaotic flow
models.@S1063-651X~97!02311-8#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

The cooperative behavior of coupled chaotic systems
attracted considerable attention lately. Synchronization
fects are observed in many physical and biological proce
and they are responsible for the transition to lo
dimensional attractors in systems with many degrees of f
dom. Synchronization of chaos is often understood as a
havior in which two coupled systems exhibit identic
chaotic oscillations@1,2#. We refer to this type of synchroni
zation as anidentical synchronization~IS!.

Recently, the notion of chaotic synchronization has be
generalized for coupled nonidentical systems@3,4#. In the
case of unidirectionally coupled chaotic systems~master-
slave configurations or systems with a skew product str
ture!

Ẋ5F~X!, ~1a!

Ẏ5G~Y,X!, ~1b!

generalized synchronization~GS! was taken to occur if there
exists a mapF: X→Y that takes the trajectories of the a
tractor in the driving spaceX5$x1 ,x2 ,...,xd% into the trajec-
tories of the response spaceY5$y1 ,y2 ,...,yr% so thatY(t)
5F„X(t)… and if this map does not depend upon initial co
ditions of the response system@4#. WhenF differs from the
identity the detection of the GS in an experiment is a diffic
task. One way to recognize the GS is to construct an au
iary response systemY8 identical toY, link it to the driving
systemX in the same way asY is linked toX,

Ẏ85G~Y8,X!, ~2!

and check the existence of the IS betweenY andY8 @5#. If
such synchronization occurs the asymptotic dynamics of
response system is independent of its initial conditions an
completely determined by the driving system. Geometrica
this implies a collapse of the overall evolution onto a sta
synchronization manifoldM5$(X,Y):F(X)5Y% in the full
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phase space of two systemsX% Y and so leads to a func
tional relationship betweenX and Y variables defining the
GS @5,6#.

Unfortunately, the auxiliary system approach is of limite
utility. The method fails for systems whose dynamical equ
tions are not available. Even though the dynamical equati
are known~e.g., in electronic circuit experiments@5#!, the
auxiliary response system can be designed only with fin
accuracy; it cannot be an exact copy of the original respo
system. An alternative approach to detect the GS is to e
mate theconditional Lyapunov exponents~CLEs! @2# l1

R

>l2
R>•••>l r

R from observed time series. The CLEs defi
the stability of both the identity manifoldY85Y in X% Y
% Y8 phase space and the synchronized manifoldY5F(X)
in X% Y space@5# and are determined by the variation
equation of the response system atdX50,

dẎ5DYG~Y,X!dY, ~3!

whereDYG denotes the Jacobian matrix with respect to
Y variable. The condition of GS isl1

R,0.
Note that for systems with a skew product structure

scribed by Eq.~1!, the CLEs represent a part of the who
Lyapunov spectruml1 ,l2 ,...,l r 1d of this system. The re-
mainder of this spectrum consists of Lyapunov expone
l1

D>l2
D>•••>ld

D of the driving system~1a!. In other
words, to obtain the whole spectrum of Lyapunov expone
of system ~1! in usual ~descending! order, l1>l2>•••
>l r 1d , the combined spectrum of the driving Lyapuno
exponents and the CLEsl1

D ,l2
D ,...,ld

D ,l1
R,l2

R,...,l r
R has to

be resorted to in order of their numerical size. If the who
spectrum of the Lyapunov exponents is known then one
extract information about the properties of the synchroni
tion manifold.

Depending on the properties of the mapF, the GS can be
subdivided into two types:weak synchronization~WS! and
strong synchronization~SS! @7#. The WS is associated with
the continuousC0 but nonsmooth mapF so that the synchro-
nization manifoldM5$(X,Y):F(X)5Y% has a fractal struc-
ture and the global dimensiondG of the strange attractor in
the whole phase spaceX% Y is larger than the dimension o
the driving attractordD in X subspace,dG.dD . The SS is
related to the smooth mapF with the degree of smoothnes
C1 or higher when the response system does not have
5183 © 1997 The American Physical Society
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5184 56K. PYRAGAS
effect on the global dimension, i.e.,dG5dD @8#. This is
valid, for example, for the IS, which is a particular case
the SS.

In most cases dimensionsdG and dD can be estimated
from the Kaplan-Yorke conjecture@9#

dG5 l G1
1

ul l G11u (
l 51

l G

l l , ~4!

dD5 l D1
1

ul l D11
D u (

l 51

l D

l l
D , ~5!

wherel G and l D are the largest integers for which the corr
sponding sums overl are non-negative. The globa
Lyapunov dimension is independent of the response sys
(dG5dD) at the condition@7# l1

R,l l D11
D . If this condition

is fulfilled and relations~4! and ~5! are valid, we have the
SS.

Note that only a finite number of Lyapunov exponents c
be reliably determined from data on the attractor@10#. An
appropriate cutoff value for the number of exponents is
lated to the global Lyapunov dimension and is equal tol G
11. The only exponents that are included in Eq.~4! are
fundamentally important to the character of the attractor
their estimation is available from time series. In the case
WS at least a maximal CLE affects the global dimension a
hence can be estimated from time series. The condition
strong synchronizationl1

R,l l D11
D corresponds to the cas

when the global dimensiondG does not depend on CLEs
Thus we cannot expect a reliable estimation of CLEs fr
time series above the threshold of SS. However, the C
can be determined just before this threshold and this suffi
to estimate characteristic values of control parameters co
sponding to the onset of SS.

II. ALGORITHM

Suppose that an experimental system under investiga
can be simulated by Eqs.~1!. We imagine that the equation
are unknown, but two scalar time seriesxi and yi , i
51,...,N, corresponding to the driving and response s
systems, respectively, are available for observation. We
sume that the time intervalt between measurements is fixe
so thatxi5x( i t) and yi5y( i t). Below t is identified with
the delay time of phase-space reconstruction in step~a! of
our algorithm. In principle, any choice oft is acceptable in
the limit of an infinite amount of data. For a small amount
data, the choice oft can be based, for example, on the eva
ation of mutual information@11#.

Due to the unidirectional coupling thexi series does no
contain any information about the response system, while
yi series does contain the information about both subsyste
Since the CLEs represent a part of the whole Lyapunov sp
trum, one can expect that they can be determined by
standard algorithms@10,12,13# from yi time series. However
the CLEs may be placed far from the maximal Lyapun
exponent in the whole spectrum ordered in descending f
ion, while the standard algorithms give reliable values o
for a few largest exponents@10,12,13#. Moreover, there is a
nontrivial problem to define which exponents belong to
f
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CLEs and which to the driving system, even though t
whole spectrum of the Lyapunov exponents is reliably de
mined. These problems can be solved in the framework
the algorithm involving information from both scalar tim
seriesxi andyi . Here we mainly use the ideas of the alg
rithm proposed by Eckmannet al. @13# based on the con
struction of local linear maps. The mappings with a high
order of Taylor series@10# are beyond our scope. We exten
the Eckmann-Kamphorst-Ruelle-Ciliberto~EKRC! algorithm
for the case of two time series and adopt it for the dir
estimation of the CLEs. The reliability of estimating th
maximal CLE by our algorithm is comparable to that of e
timating the conventional maximal Lyapunov exponent
the EKRC algorithm. A copy of the computer progra
implementing this algorithm can be obtained from the a
thor.

To speed up the computation and to bring our consid
ation closer to a real experimental situation we present
time seriesxi andyi by integer numbers normed to the sam
maximal value M0 so that 0<xi<M0 and 0<yi<M0 .
Typically we takeM0510 000 in accordance with a prec
sion of 1024. Similarly to the EKRC algorithm, our algo
rithm involves the following three steps:~a! reconstructing
the dynamics by the time-delay method@14# and finding the
neighbors of the fiducial trajectory,~b! obtaining the tangen
maps by a least-squares fit, and~c! deducing the CLEs from
the tangent maps. Now we consider these steps in detai

~a! We choose different embedding dimensionsEx andEy
for the driving and response systems and defi
(Ex1Ey)-dimensional vectors

Ri5$xi 2Ex11 ,...,xi 22 ,xi ,yi 2Ey11 ,...,yi 22 ,yi% ~6!

for i 5 i 0[max(Ex ,Ey), i 011,...,N, to construct the dynam
ics of the fiducial trajectory in the wholeX% Y phase space
In view of step~b! we have to determine the neighbors
Ri , i.e., the pointsRj of the orbit that are contained in a ba
of small radiuse i centered atRi ,

iRj2Ri i<e i . ~7!

Here i i implies the maximal projection of the vector rath
than the Euclidean norm. This allows a fast search for theRj
by first sorting the data@13#. Denote byJi the number of
neighborsRj of Ri within a distancee i , as determined by
Eq. ~7!. Clearly, Ji depends one i . In ~b! we discuss the
choice of these parameters for everyi .

~b! Having embedded our dynamical system, we want
determine the tangent map that describes how the time
lution sends small vectors aroundRi5$Xi ,Yi% to small vec-
tors aroundYi 1m . This problem can be considered in th
phase space of reduced dimension@13#. Following Ref.@10#,
we introduce the local dimensionsLx<Ex and Ly<Ey that
reflect the number of dimensions necessary to capture
geometry of a small neighborhood of the attractor after it h
been successfully embedded~i.e., the time-delay representa
tion is diffeomorphic to the original attractor!. Dimensions
Lx andLy are used for constructing the local maps and c
respond to the number of Lyapunov exponents of the driv
system and CLEs, respectively, produced by algorithm. T
transition from embedding dimensions to local dimension
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56 5185CONDITIONAL LYAPUNOV EXPONENTS FROM TIME SERIES
performed similarly to that in Ref.@13#. We drop the inter-
mediate components in Eq.~6! and define the
Lx-dimensionalXi andLy-dimensionalYi vectors as

Xi5~xi 2Ex11 ,...,xi 2m ,xi !
T, ~8a!

Yi5~yi 2Ey11 ,...,yi 2m ,yi !
T. ~8b!

The dimensionsLx<Ex and Ly<Ey are determined by
equalitiesEx5(Lx21)m11 andEy5(Ly21)m11, which
we assume to hold for some integerm>1. The casem51
corresponds toLx5Ex , Ly5Ey . Whenm.1 the dimension
of the tangent map is reduced with respect to the embed
dimension and this can help to avoid the spurious Lyapu
exponents@13#.

The tangent map is defined by two matricesAi and Bi ,
which are obtained by looking for neighborsRj of Ri and
imposing

Ai~Xj2Xi !1Bi~Yj2Yi !'Yj 1m2Yi 1m . ~9!

Ai is the rectangularLy3Lx matrix andBi is the squareLy
3Ly matrix, which in view of Eqs.~8! and~9! have the form

Ai5S 0 0 ••• 0

0 0 ••• 0

A A A A

0 0 ••• 0

a1
i a2

i ••• aLy

i

D ,

Bi5S 0 1 0 ••• 0

0 0 1 ••• 0

A A A A

0 0 0 ••• 1

b1
i b2

i b3
i ••• bLy

i

D .

Matrix Ai contains Lx unknown elements ak
i , k

51,2,...,Lx , and matrixBi containsLy unknownsbk
i , k

51,2,...,Ly . TheseLx1Ly unknowns are obtained by
least-squares fit

min
ak

i ,bk
i

1

Ji
(
j 51

Ji

iAi~Xj2Xi !1Bi~Yj2Yi !2~Yj 1m2Yi 1m!iEuc
2 ,

wherei iEuc
2 denotes the square of the Euclidean norm of

vector. This problem reduces to a set ofLx1Ly linear equa-
tions with respect toLx1Ly unknownsak

i ,bk
i , which we

solve by the LU decomposition algorithm@15#. Obviously,
this algorithm fails if the number of neighborsRj of the
fiducial point Ri is less than the number of unknowns,Ji
,Lx1Ly . To avoid this problem the radiuse i has to be
chosen to be sufficiently large. For the specific examp
discussed below we have selectede i andJi as follows. Count
the number of neighborsJi of Ri corresponding to increasin
values ofe i from a preselected sequence of possible val
and stop whenJi exceeds for the first timeJmin52(Lx1Ly).
To speed up the calculations we also stop the search fo
ng
v

e

s

s

he

neighbors when for givene i the number of neighbors ex
ceeds some maximal valueJmax540. Thus, for everyi , Ji is
in the interval@Jmin ,Jmax#.

~c! Step~b! gives matricesAi andBi of the tangent map,
which represent the reconstructed JacobiansDxG and DyG
of Eq. ~1b! with respect toX andY variables, respectively
The CLEs are determined by the product of the matri
Bi 0

Bi 01mBi 012m••• . To extract the CLEs from this produc
we use the QR decomposition technique@13,15#. The
method recursively defines an orthogonal matrixQl and an
upper triangular matrixRl , l 50,1,...,L21, via Bi 01 lmQl

5Ql 11Rl 11 , where Q0 is the unit matrix. The CLEs are
given by

ln
Rm5

1

tL (
l 50

L21

ln~Ql !nn ,

where K,(N2 i 0)/m is the available number of matrice
and (Ql)nn is the diagonal element of the matrixQl . Note
that in final step we do not require a knowledge of the ma
Ai . However, the use of this matrix in step~b! is necessary
in order to determine correctly the tangent map~9! and hence
the matrixBi defining the CLEs.

Now we illustrate our algorithm with two specific ex
amples.

III. EXAMPLES

A. Coupled Hénon maps

The first example represents two identical unidirectiona
coupled He´non @16# maps

S x1~ i 11!

x2~ i 11! D5S f @x1~ i !,x2~ i !#
bx1~ i ! D , ~10a!

S y1~ i 11!

y2~ i 11! D5S ~12k! f @y1~ i !,y2~ i !#1k f@x1~ i !,x2~ i !#
by1~ i ! D ,

~10b!

where f @x1 ,x2#512ax1
21x2 , a51.4, b50.3, andk is the

control parameter defining the coupling strength. At anyk,
this system has an invariant manifoldY5X and hence ad-
mits the IS, which in this case is equivalent to the SS. The
appears when the manifoldY5X becomes stable. This hap
pens whenk exceeds some thresholdk.k3'0.34 so that the
transverse Lyapunov exponents of the manifoldY5X be-
come negative. Before reaching this threshold, the sys
exhibits the GS in the form of WS. This is observed in t
interval of parameterkP@k1 ,k2#, with k1'0.16 and k2
'0.20. Here the maximal CLE is negative, while the ma
mal transverse Lyapunov exponent of the identity manif
Y5X is positive. This means that systemsY andY8 @here by
Y8 we imply the auxiliary response system constructed
accordance with Eq.~10b!# are synchronized in the sense
IS and there is no IS betweenX andY.

To test the algorithm two scalar time seriesx1( i ) and
y1( i ) were treated as experimental data. The results p
sented in Table I correspond to a fixed valuek50.1 and
different values of local dimensionsLx andLy . For compari-
son, we calculated the correct values of CLEsl1

R'0.227 and
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5186 56K. PYRAGAS
l2
R'21.537 (k50.1) using Eqs.~10!. For anyLx>2 and

Ly>2, the algorithm gives two CLEs close to these corr
values. IfLy is chosen correctly@i.e., equal to the dimension
of the response system~10b! Ly5r 52# we obtain the right
number of CLEs whose values weakly depend onLx pro-
vided Lx>2. For Ly.2, the algorithm gives spurious CLE
in parallel with valid CLEs.

One way of identifying spurious exponents is to analy
the influence of external noise@10#. This is illustrated in Fig.
1. We have added Gaussian white noise to the data po
with the standard deviations. In Fig. 1~a! we have usedLx
5Ly52, while in Fig. 1~b! we usedLx5Ly53, which gives

FIG. 1. Effect of external noise on the determination of CL
for coupled He´non maps at the same values of parameters a
Table I.s is the standard deviation of noise added to the data. Lo
dimensions are~a! Lx5Ly52 and ~b! Lx5Ly53. The spurious
exponent wanders from about10.7 to nearly20.9 as the noise
level is increased. The exponents do not cross each other,
switch roles as they become close. The correct values of the C
are shown by dotted lines.

TABLE I. CLEs for coupled He´non maps atk50.1 computed
from N550 000 data points evaluated with the sampling timet
51. We vary the local dimensionsLx andLy at fixedm51 so that
they coincide with the embedding dimensions,Ex5Lx and Ey

5Ly . The correct values of CLEs calculated directly from Eq
~10! are l1

R'0.227, l2
R'21.537. ForLy.2, the algorithm gives

Ly22 spurious CLEs in parallel with two valid CLEs. The valu
corresponding to the valid CLEs are underlined.

Ly Lx l1
R l2

R l3
R l4

R

2 2 0.228 21.408
2 3 0.224 21.411
2 4 0.219 21.402
3 2 0.462 0.203 21.558
3 3 0.459 0.186 21.547
3 4 0.489 0.178 21.546
4 2 0.530 0.206 -0.962 21.629
4 3 0.512 0.189 20.863 21.612
4 4 0.536 0.191 20.786 21.613
t

e

ts

one spurious CLE. The spurious CLE in Fig. 1~b! drops rap-
idly as the added noise is increased, going from10.7 down
to 20.9.

Figure 2 shows a correlation between the dependenc
CLEs on the coupling strengthk estimated from time serie
with that calculated directly from Eqs.~10!. Good agree-
ment, especially for the maximal CLE, is observed fork
,k3 . For k.k3 , we have the SS with identical time serie
y1( i )5x1( i ) and the algorithm fails. This is in agreeme
with the general prediction that CLEs cannot be reliably
timated from time series in the domain of SS. However,
algorithm gives the correct values of the maximal CLE in t
immediate vicinity of the thresholdk&k3 .

B. Coupled Rössler and Lorenz systems

As a second example we choose the model considere
Ref. @7#, which illustrates the GS in essentially differe
time-continuous systems. It represents unidirectiona
coupled Ro¨ssler@17# and Lorenz@18# equations

d

dt S x1

x2

x3

D 5aS 2x22x3

x110.2x2

0.21x1x3x125.7x3

D , ~11a!

d

dt S y1

y2

y3

D 5S 10~2y11y2!

28y12y22y1y3

y1y228/3y3

D 1kS 0
x2

0
D . ~11b!

Here Eqs.~11a! and ~11b! correspond to the Ro¨ssler ~driv-
ing! and the Lorenz~response! system, respectively. The
multiplier a56 is introduced to control the time scale of th
driving system. The last term in Eq.~11b! describes the cou
pling, wherek is the coupling strength. Despite the lack
any symmetry admitting the IS, this system exhibits the
@7#.

in
al

ut
Es

FIG. 2. Dependence of CLEs on coupling strength for coup
Hénon maps atm51, Lx5Ly52. The points correspond to th
values of CLEs estimated from time series and the dotted li
show the correct values of CLEs calculated directly from Eqs.~10!.
The intervalk1,k,k2 corresponds to the WS. Atk.k3 systems
~10a! and~10b! exhibit identical behavior corresponding to the S

.
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When testing the algorithm, the variablesx1(t) andy1(t)
were treated as experimentally available outputs. In F
3~a! and 3~b!, the calculated maximal CLE and the glob
Lyapunov dimension, respectively, are shown as function
coupling strengthk. For comparison, the same character
tics determined directly from Eqs.~11! are presented. Goo
agreement of corresponding characteristics is observed
large interval of coupling strengths. These results allow u
estimate both the threshold of GS and the smoothness o
synchronization manifold. The threshold of GS is obtain

FIG. 3. ~a! Maximal CLE l1
R and ~b! global Lyapunov dimen-

siondG as functions of the coupling strengthk for coupled Ro¨ssler
and Lorenz systems atN550 000, t50.15 for k<10, and t
50.03 for k.10. The local dimensionsLx5Ly53 andm51. To
estimatedG one needs a knowledge of the Lyapunov exponents
the driving system,l1

D'0.41, l2
D'0.00, andl3

D'237.66. We
evaluated them by a standard EKRC algorithm fromx1(t) time
series. The threshold of GSk1'6.66 corresponds tol1

R(k1)50.
The global dimensiondG saturates to the value approximately equ
to the driving dimensiondD521l1

D/ul3
Du'2.01 atk.40. In this

domain, the synchronization manifold is almost smooth. For co
parison, the correct characteristicsl1

R(k) anddG(k) determined di-
rectly from Eqs.~11! are shown by dotted lines.
,
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-
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from l1
R(k1)50 and is approximately equal tok1'6.66. In

the case of the driving system presented by a thr
dimensional flow the condition of SS becomesl1

R(k),l3
D .

For the system of equations~11a!, we havel1
D'0.41, l2

D

'0.00, andl3
D'237.66 and the driving Lyapunov dimen

sion is equal todD521l1
D/ul3

Du'2.01. Because of the larg
negative value ofl3

D the condition l1
R(k),l3

D is not
achieved even for very largek'1000. Thus we have the WS
for all k.k1 and the algorithm of estimating CLEs from tim
series works well in the whole considered interval ofk. Al-
though the rigorous criterion of WSdG(k).dD is fulfilled
for all k.k1 , the global dimension goes down to the val
approximately equal to the driving dimension atk*40. Here
the global dimension isdG(k)521l1

D/ul1
R(k)u and since

l1
D/ul3

Du!1 andl1
D/ul1

R!1, we havedG(k)'dD'2. There-
fore, one can conclude that the synchronization manifold
almost smooth atk*40. This conclusion is confirmed in
Ref. @7# by calculating the mean local thickness of the sy
chronization manifold. The regionk*40 can be interpreted
as a domain of not fully developed SS.

In addition to the examples presented we used the a
rithm for real experimental data taken from coupled ele
tronic chaos oscillators and successfully obtained the dom
of GS as well as properties of synchronization manifold@19#.

IV. CONCLUSION

An algorithm for estimating conditional Lyapunov expo
nents from two scalar time series, one taken from the driv
X and the other from the responseY, system, is suggested
This analysis of experimental data enables one to detec
generalized synchronization in unidirectionally coupled ch
otic systems. As a consequence, one can predict~without
recourse to an experimental auxiliary response syst!
whether an identical copyY8 of the response system con
nected to the driving systemX will exhibit a behavior iden-
tical to the original response systemY. In the domain of
generalized synchronization, one can estimate the smo
ness of the synchronization manifold. This estimate is ba
on a comparison of the global Lyapunov dimension with t
dimension of the driving attractor.
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@16# M. Hénon, Commun. Math. Phys.50, 69 ~1976!.
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