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Conditional Lyapunov exponents from time series

K. Pyraga§
Semiconductor Physics Institute, LT-2600 Vilnius, Lithuania
(Received 9 May 1997

A method for estimating conditional Lyapunov exponents from time series of two unidirectionally coupled
chaotic systems is developed. It uses two scalar data sets, one taken from the driving and the other from the
response system, and enables one to detect a generalized synchronization in an experiment without recourse to
an auxiliary response system. The method is illustrated on coupled maps as well as coupled chaotic flow
models.[S1063-651X97)02311-9

PACS numbes): 05.45+b

[. INTRODUCTION phase space of two systersbY and so leads to a func-
tional relationship betweeX andY variables defining the
The cooperative behavior of coupled chaotic systems ha&S[5,6].
attracted considerable attention lately. Synchronization ef- Unfortunately, the auxiliary system approach is of limited
fects are observed in many physical and biological processadility. The method fails for systems whose dynamical equa-
and they are responsible for the transition to low-tions are not available. Even though the dynamical equations
dimensional attractors in systems with many degrees of freeare known(e.g., in electronic circuit experiments]), the
dom. Synchronization of chaos is often understood as a beuxiliary response system can be designed only with finite
havior in which two coupled systems exhibit identical accuracy; it cannot be an exact copy of the original response
chaotic oscillation$1,2]. We refer to this type of synchroni- system. An alternative approach to detect the GS is to esti-
zation as andentical synchronizatiorlS). mate theconditional Lyapunov exponent€LES) [2] )\i‘
Recently, the notion of chaotic synchronization has been;)\gz---z)\f‘ from observed time series. The CLEs define
generalized for coupled nonidentical systef8s4]. In the  the stability of both the identity manifol’ =Y in X&Y
case of unidirectionally coupled chaotic systefmsaster- gY’ phase space and the synchronized manif6idd (X)
slave configurations or systems with a skew product strucin XeY space[5] and are determined by the variational

ture) equation of the response systemsxt=0,
X=F(X), (13 SY=DyG(Y,X)dY, 3
YZG(Y,X), (1)  WhereDyG denotes the Jacobian matrix with respect to the

Y variable. The condition of GS is§<0.

Note that for systems with a skew product structure de-
scribed by Eq(1), the CLEs represent a part of the whole
Lyapunov spectruniq,\s,...,\,, 4 Of this system. The re-
msa\indgr of thistpectrum consists of Lyapunov exponents
=®(X(t)) and if this map does not depend upon initial con-M=Ap=:--=Ag of the driving system(1d). In other
ditions of the response systdrh]. When® differs from the words, to obtal_n the whole spectrum of Lyapunov exponents
identity the detection of the GS in an experiment is a difficult®f System (1) in usual (descending order, A\;=\,=""
task. One way to recognize the GS is to construct an auxil>r+d» the combined spe%trum %f tr;e ‘E{'V'”g RLyapunov
iary response systeiv” identical toY, link it to the driving  €xPonents and the CLBS A3,...Ag AT, A5 ... Af has to
systemX in the same way a¥ is linked toX, be resorted to in order of their numer!cal size. If the whole

spectrum of the Lyapunov exponents is known then one can
o , extract information about the properties of the synchroniza-
Y =G(Y',X), 2 tion manifold.

Depending on the properties of the m&pthe GS can be
and check the existence of the IS betwéeandY’ [5]. If subdivided into two typesweak synchronizatiofWs) and
such synchronization occurs the asymptotic dynamics of thetrong synchronizatioiSS [7]. The WS is associated with
response system is independent of its initial conditions and ithe continuou<® but nonsmooth mag so that the synchro-
completely determined by the driving system. Geometrically hization manifoldM ={(X,Y):®(X)=Y} has a fractal struc-
this implies a collapse of the overall evolution onto a stableture and the global dimensia, of the strange attractor in
synchronization manifold ={(X,Y):®(X)=Y} in the full  the whole phase spac¢édY is larger than the dimension of

the driving attractordy in X subspaceds>dp. The SS is
related to the smooth map with the degree of smoothness
*Electronic address: pyragas@kes0.pfi.lt C! or higher when the response system does not have an

generalized synchronizatidicS) was taken to occur if there
exists a mapb: X—Y that takes the trajectories of the at-
tractor in the driving spac¥={x4,x,,... Xq} into the trajec-
tories of the response spa¥e={y;,ys,...,y;} S0 thatY(t)
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effect on the global dimension, i.edg=dp [8]. This is CLEs and which to the driving system, even though the
valid, for example, for the IS, which is a particular case ofwhole spectrum of the Lyapunov exponents is reliably deter-

the SS. mined. These problems can be solved in the framework of
In most cases dimensiordy; and dp can be estimated the algorithm involving information from both scalar time
from the Kaplan-Yorke conjectul@] seriesx; andy;. Here we mainly use the ideas of the algo-
| rithm proposed by Eckmanat al. [13] based on the con-
1 S struction of local linear maps. The mappings with a higher
de=le+ Nl Zl M (4) order of Taylor serie§10] are beyond our scope. We extend
¢ the Eckmann-Kamphorst-Ruelle-Ciliber&KRC) algorithm
I for the case of two time series and adopt it for the direct
dp=lp+ —— E AP, (5) estimation of the CLEs. The reliability of estimating the
|)\|D+1 =1 maximal CLE by our algorithm is comparable to that of es-

timating the conventional maximal Lyapunov exponent by
wherelg andlp are the largest integers for which the corre-the EKRC algorithm. A copy of the computer program
sponding sums overl are non-negative. The global implementing this algorithm can be obtained from the au-
Lyapunov dimension is independent of the response systethor.

(de=dp) at the conditior{7] NF<\{ .. If this condition To speed up the computation and to bring our consider-
is fulfilled and relations4) and (5) are valid, we have the ation closer to a real experimental situation we present the
SS. time seriex; andy; by integer numbers normed to the same

Note that only a finite number of Lyapunov exponents canmaximal valueMg so that Gsx;<My and Osy;<M,.
be reliably determined from data on the attradtb®]. An  Typically we takeM,=10 000 in accordance with a preci-
appropriate cutoff value for the number of exponents is resion of 10°*. Similarly to the EKRC algorithm, our algo-
lated to the global Lyapunov dimension and is equal do rithm involves the following three step$a) reconstructing
+1. The only exponents that are included in E4) are the dynamics by the time-delay methd#] and finding the
fundamentally important to the character of the attractor andi€ighbors of the fiducial trajectoryh) obtaining the tangent
their estimation is available from time series. In the case ofmaps by a least-squares fit, af@ deducing the CLEs from
WS at least a maximal CLE affects the global dimension andhe tangent maps. Now we consider these steps in detail.
hence can be estimated from time series. The condition of (& We choose different embedding dimensi@isandE,
strong synchronizati0|7u§{<)\ﬁ3+l corresponds to the case for the driving and response systems and define

when the global dimensiod; does not depend on CLEs. (Ex+ Ey)-dimensional vectors
Thus we cannot expect a reliable estimation of CLEs from

time series above the threshold of SS. However, the CLEs
can be determined just before this threshold and this suffices

to estimate characteristic values of control parameters corrd®" | =io=maxEE,), io+1,...N, to construct the dynam-
sponding to the onset of SS. ics of the fiducial trajectory in the whol¥®Y phase space.

In view of step(b) we have to determine the neighbors of
Ri, i.e., the pointRR; of the orbit that are contained in a ball
of small radiuse; centered aR;,

Suppose that an experimental system under investigation
can be simulated by Eqgél). We imagine that the equations IR—Ril<¢. 7
are unknown, but two scalar time serigs and y;, i
=1,...N, corresponding to the driving and response subHere| | implies the maximal projection of the vector rather
systems, respectively, are available for observation. We aghan the Euclidean norm. This allows a fast search folRhe
sume that the time interval between measurements is fixed by first sorting the dat&13]. Denote byJ; the number of
so thatx;=x(i7) andy;=y(i7). Below 7 is identified with  neighborsR; of R; within a distancee;, as determined by
the delay time of phase-space reconstruction in ¢&@pf  Eq. (7). Clearly, J; depends org;. In (b) we discuss the
our algorithm. In principle, any choice afis acceptable in choice of these parameters for every
the limit of an infinite amount of data. For a small amount of  (b) Having embedded our dynamical system, we want to
data, the choice of can be based, for example, on the evalu-determine the tangent map that describes how the time evo-
ation of mutual informatiorf11]. lution sends small vectors aroui={X;,Y;} to small vec-

Due to the unidirectional coupling the series does not tors aroundY;, . This problem can be considered in the
contain any information about the response system, while thphase space of reduced dimendit8]. Following Ref.[10],
y; series does contain the information about both subsystemsie introduce the local dimensions<E, andL,<E, that
Since the CLESs represent a part of the whole Lyapunov speceflect the number of dimensions necessary to capture the
trum, one can expect that they can be determined by thgeometry of a small neighborhood of the attractor after it has
standard algorithmisl0,12,13 from y; time series. However, been successfully embeddéck., the time-delay representa-
the CLEs may be placed far from the maximal Lyapunovtion is diffeomorphic to the original attractorDimensions
exponent in the whole spectrum ordered in descending fash-, andL, are used for constructing the local maps and cor-
ion, while the standard algorithms give reliable values onlyrespond to the number of Lyapunov exponents of the driving
for a few largest exponen{d0,12,13. Moreover, there is a system and CLEs, respectively, produced by algorithm. The
nontrivial problem to define which exponents belong to thetransition from embedding dimensions to local dimensions is

Ri:{xifEXJrl!"'in*ZiXi vyiny+11"'!yi72!yi} (6)

II. ALGORITHM
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performed similarly to that in Ref.13]. We drop the inter- neighbors when for giver; the number of neighbors ex-
mediate components in EQ.(6) and define the ceeds some maximal valdg,,=40. Thus, for every, J; is

L-dimensionalX; andL-dimensionalY; vectors as in the intervall Jmin »Jmaxd-
T (c) Step(b) gives matriced\; andB; of the tangent map,
Xi=(Xi—g+1re0eXi—mXi) (88 which represent the reconstructed Jacobiagé and D,G
of Eq. (1b) with respect toX andY variables, respectively.
Ylz(yinyJrla---!YifmaYi)T- (8b)  The CLEs are determined by the product of the matrices

Bi Bi,+mBiy+2m *+ . TO extract the CLEs from this product

The dimensionsL,<E, and L <E, are determined by e yuse the QR decomposition techniq{i#3,15. The

equalitiesE,=(Lx—1)m+1 andE,=(L,—1)m+1, which  method recursively defines an orthogonal ma@ixand an
we assume to hold for some integee=1. The casen=1  ypper triangular matrixR,, 1=0,1,..,.L.—1, via B, ,;mQ

corresponds th,=E,, L,=E,. Whenm>1 the dimension

of the tangent map is reduced with respect to the embedding Qi+1Ri1, whereQq s the unit matrix. The CLEs are

dimension and this can help to avoid the spurious Lyapuno ven by
exponentg13]. L
The tangent map is defined by two matricksand B; , )\Em= - E Q) s
which are obtained by looking for neighboR; of R; and L <%
imposing

where K<(N—ig)/m is the available number of matrices
Ai(X;=Xi)+Bi(Y;=Y) =Y m=Yiim- (99 and @Q))nn is the diagonal element of the matr@y, . Note
that in final step we do not require a knowledge of the matrix
A is the rectangulat, XL, matrix andB; is the squard., A, . However, the use of this matrix in stép) is necessary
XLy matrix, which in view of Eqs(8) and(9) have the form  in order to determine correctly the tangent n¢@pand hence
the matrixB; defining the CLEs.

0 0 - 0 Now we illustrate our algorithm with two specific ex-
o o --- 0 amples.
A= 0 6 o | lll. EXAMPLES
P i A. Coupled Henon maps
a; a, a. , . . S
Y The first example represents two identical unidirectionally
O 1 0 - 0 coupled Haon [16] maps
0 0 1 0 X (i+1)) [ f[xa(i),xa(1)]
a| o : x2<i+1>)‘( bxy(i) ) (109
i .
° 00 ) (AR yeh kD)
b, by by - bl yali+1) by (i)
(10b)

Matrix A; contains L, unknown elementsa,, k 5 _
=1,2,...L,, and matrixB; containsL, unknownsbj, k  Wheref[x;,x;]=1-ax;+x,, a=1.4,b=0.3, andk is the
=1,2,..,L,. TheselL,+L, unknowns are obtained by a co_ntrol parameter defmmg the com_,lplmg strength. At &ny
least-squares fit this system has an invariant manifoft= X and hence ad-
mits the IS, which in this case is equivalent to the SS. The IS
1 3 appears when the manifod= X becomes stable. This hap-
mm 3 Z [AI(X; = X)) +Bi(Y;—=Yi) = (Yjim— Yiiml2uwe,  penswherk exceeds some threshdtdks;~0.34 so that the
ay by, =1 transverse Lyapunov exponents of the manifile X be-
come negative. Before reaching this threshold, the system
where| ||2,,. denotes the square of the Euclidean norm of theexhibits the GS in the form of WS. This is observed in the
vector. This problem reduces to asetLqHL linear equa- interval of parameteke[k;,k;], with k;~0.16 andk,
tions with respect td_,+L, unknownsa, ,b,, which we  ~0.20. Here the maximal CLE is negative, while the maxi-
solve by the LU decomposmon algor|th[715]. Obviously, mal transverse Lyapunov exponent of the identity manifold
this algorithm fails if the number of neighboR®; of the  Y=Xis positive. This means that systeMsandY' [here by
fiducial pointR; is less than the number of unknownk, Y’ we imply the auxiliary response system constructed in
<Ly+Ly. To avoid this problem the radius has to be accordance with Eq10b)] are synchronized in the sense of
chosen to be sufficiently large. For the specific exampledS and there is no IS betweetiandY.
discussed below we have selectg@dndJ; as follows. Count To test the algorithm two scalar time serieg(i) and
the number of neighboid; of R; corresponding to increasing Yi(i) were treated as experimental data. The results pre-
values ofe; from a preselected sequence of possible valuesented in Table | correspond to a fixed vake 0.1 and
and stop wherd; exceeds for the first timé,,=2(L,+L,).  different values of local dimensiots, andL, . For compari-
To speed up the calculations we also stop the search for threon, we calculated the correct values of Cll\li—cfsuo 227 and
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TABLE |. CLEs for coupled Haon maps ak=0.1 computed
from N=50 000 data points evaluated with the sampling time
=1. We vary the local dimensiors, andL, at fixedm=1 so that
they coincide with the embedding dimensios,=L, and E,
=L,. The correct values of CLEs calculated directly from Egs.
(10) areA§~0.227,\5~ —1.537. ForL,>2, the algorithm gives
L,—2 spurious CLEs in parallel with two valid CLEs. The values
corresponding to the valid CLEs are underlined.
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3 2 0462 0203 = 1558 a6k el -

3 3 0.459 0.186 —1.547 0‘0 . 0'1 . 0'2 . 0'3 """0'4

3 4 0.489 0.178 —1.546 ) ' ) ) )

4 2 0.530 0.206 -0.962 —1.629 k(s™)

4 3 0.512 0.189 —0.863 —1.612

4 4 0.536 0.191 —0.786 —1.613 FIG. 2. Dependence of CLEs on coupling strength for coupled

Henon maps am=1, L,= Ly=2. The points correspond to the
values of CLEs estimated from time series and the dotted lines

R _ . show the correct values of CLEs calculated directly from Eg8).
Az~ —1.537 k=0.1) using Eqs(10). For anyL,>2 and The intervalk;<k<k, corresponds to the WS. At>k; systems

Ly=2, the algorithm gives two CLEs close to these correc ;g and(10b) exhibit identical behavior corresponding to the SS.
values. IfL is chosen correctlji.e., equal to the dimension
of the response systefdOb) L,=r=2] we obtain the right  one spurious CLE. The spurious CLE in FigblLdrops rap-

number of CLEs whose values weakly dependlgnpro- gy as the added noise is increased, going fre®.7 down
videdL,=2. ForL,>2, the algorithm gives spurious CLES 5" _g.g.

in parallel with valid CLEs. Figure 2 shows a correlation between the dependence of

One way of identifying spurious exponents is to analyzec| s on the coupling strength estimated from time series

the influence of external noi¢&0]. This is illustrated in Fig.  \yith that calculated directly from Eqg10). Good agree-
1. We have added Gaussian white noise to the data poin]:ﬁent, especially for the maximal CLE, is observed for

with the standard deviatioo. In Fig. 1(a) we have used.,
=L,=2, while in Fig. Xb) we used_,=L,=23, which gives

<ks. Fork>ks, we have the SS with identical time series
y1(i)=x4(i) and the algorithm fails. This is in agreement
with the general prediction that CLEs cannot be reliably es-
timated from time series in the domain of SS. However, the

1 . . ' r .
— ' ' ' ' ' (@ ' algorithm gives the correct values of the maximal CLE in the
@ ok . seesisiesases™™ immediate vicinity of the thresholl<kj.
§_ 4k i B. Coupled Rassler and Lorenz systems
‘E 990.-.0.-e-.O.-:n-.-.n...."._._._...c_'_':‘_._._. LT As a second example we choose the model considered in
=R T T S R Ref. [7], which illustrates the GS in essentially different
§ 1 — T 7 time-continuous systems. It represents unidirectionally
O preesteesee,,, ) | coupled Rasler[17] and LorenZ 18] equations
E o R
s °r g (% —xp—xg
-_g Ll o-.................000o000o:: a X | =a X1+ 02(2 s (11@
o IRl X3 0.2+ X X3X1— 5.7%3
2 R e e I R
-10 -8 -6 -4 -2 0 q (Ve 10(—y1+y2) 0
log, o dat Yo |=|28y1=Y>o—VY1¥s | +k| X2 |. (11b
Y3 y1y2—8/3y3 0

FIG. 1. Effect of external noise on the determination of CLEs i .
for coupled Haon maps at the same values of parameters as ihier® Egs.(11a and(11b) correspond to the Risler (driv-
Table I.c is the standard deviation of noise added to the data. Locall@) and the Lorenz(responsg system, respectively. The
dimensions arga) L,=L,=2 and (b) L,=L,=3. The spurious multiplier =6 is introduced to control the time scale of the
exponent wanders from about0.7 to nearly—0.9 as the noise driving system. The last term in E¢L1b) describes the cou-
level is increased. The exponents do not cross each other, b@ing, wherek is the coupling strength. Despite the lack of
switch roles as they become close. The correct values of the CLE8nY symmetry admitting the IS, this system exhibits the GS
are shown by dotted lines. [7].
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siondg as functions of the coupling strengthfor coupled Rssler
and Lorenz systems dil=50000, r=0.15 for k<10, and 7
=0.03 fork>10. The local dimensionk,=L,=3 andm=1. To
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from )\ﬁ(kl)zo and is approximately equal tq~6.66. In
the case of the driving system presented by a three-
dimensional flow the condition of SS becomed k) <\3.
For the system of equatiori@1a, we havex?~0.41, A3
~0.00, and\3~ —37.66 and the driving Lyapunov dimen-
sion is equal talp =2+ \D/|\J|~2.01. Because of the large
negative value of\y the condition \{(k)<\} is not
achieved even for very large~1000. Thus we have the WS
for all k>k; and the algorithm of estimating CLEs from time
series works well in the whole considered intervakofAl-
though the rigorous criterion of W8g(k)>d, is fulfilled
for all k>kq, the global dimension goes down to the value
approximately equal to the driving dimensiorkat 40. Here
the global dimension iglg(k)=2+A2/|A%(k)| and since
A2/|\D|<1 and\P/|\R<1, we havedg(k) ~dp~2. There-
fore, one can conclude that the synchronization manifold is
almost smooth ak=40. This conclusion is confirmed in
Ref.[7] by calculating the mean local thickness of the syn-
chronization manifold. The regiok=40 can be interpreted
as a domain of not fully developed SS.

In addition to the examples presented we used the algo-

estimatedg one needs a knowledge of the Lyapunov exponents ofithm for real experimental data taken from coupled elec-

the driving system\D?~0.41, A\J~0.00, and\5~—37.66. We
evaluated them by a standard EKRC algorithm fragft) time
series. The threshold of Gls,~6.66 corresponds ta?(k1)=0.

The global dimensiodg saturates to the value approximately equal

to the driving dimensiordp=2+\D/|\5|~2.01 atk>40. In this

domain, the synchronization manifold is almost smooth. For com-

parison, the correct characteristbc%(k) anddg(k) determined di-
rectly from Egs.(11) are shown by dotted lines.

When testing the algorithm, the variabbegt) andy;(t)

tronic chaos oscillators and successfully obtained the domain
of GS as well as properties of synchronization manifd/d).

IV. CONCLUSION

An algorithm for estimating conditional Lyapunov expo-
nents from two scalar time series, one taken from the driving
X and the other from the respon¥e system, is suggested.
This analysis of experimental data enables one to detect the
generalized synchronization in unidirectionally coupled cha-

were treated as experimentally available outputs. In Figsotic systems. As a consequence, one can prddithout

3(a) and 3b), the calculated maximal CLE and the global recourse to an experimental auxiliary response system
Lyapunov dimension, respectively, are shown as functions ofvhether an identical copY’ of the response system con-
coupling strengttk. For comparison, the same characteris-nected to the driving systeiX will exhibit a behavior iden-

tics determined directly from Eg$11) are presented. Good tical to the original response syste¥h In the domain of
agreement of corresponding characteristics is observed ingeneralized synchronization, one can estimate the smooth-
large interval of coupling strengths. These results allow us tamess of the synchronization manifold. This estimate is based
estimate both the threshold of GS and the smoothness of tten a comparison of the global Lyapunov dimension with the
synchronization manifold. The threshold of GS is obtaineddimension of the driving attractor.
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